Package: DA 1.2.0
DA: Discriminant Analysis for Evolutionary Inference
Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDAKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFDA). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.
Authors:
DA_1.2.0.tar.gz
DA_1.2.0.zip(r-4.5)DA_1.2.0.zip(r-4.4)DA_1.2.0.zip(r-4.3)
DA_1.2.0.tgz(r-4.4-any)DA_1.2.0.tgz(r-4.3-any)
DA_1.2.0.tar.gz(r-4.5-noble)DA_1.2.0.tar.gz(r-4.4-noble)
DA_1.2.0.tgz(r-4.4-emscripten)DA_1.2.0.tgz(r-4.3-emscripten)
DA.pdf |DA.html✨
DA/json (API)
# Install 'DA' in R: |
install.packages('DA', repos = c('https://xinghuq.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xinghuq/da/issues
biomedicalinformaticschipseqclusteringcoveragednamethylationdifferentialexpressiondifferentialmethylationsoftwaredifferentialsplicingepigeneticsfunctionalgenomicsgeneexpressiongenesetenrichmentgeneticsimmunooncologymultiplecomparisonnormalizationpathwaysqualitycontrolrnaseqregressionsagesequencingsystemsbiologytimecoursetranscriptiontranscriptomicsdapcdiscriminant-analysisecologicalkernelkernel-localkernel-principle-componentspopulation-structure-inferenceprincipal-components
Last updated 3 years agofrom:ac25c45c19. Checks:OK: 1 ERROR: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | ERROR | Nov 21 2024 |
R-4.5-linux | ERROR | Nov 21 2024 |
R-4.4-win | ERROR | Nov 21 2024 |
R-4.4-mac | ERROR | Nov 21 2024 |
R-4.3-win | ERROR | Nov 21 2024 |
R-4.3-mac | ERROR | Nov 21 2024 |
Exports:KLFDAKLFDA_mkKLFDAMkmatrixGaussLDAKPCLFDALFDAKPCMabayespredictpredict.KLFDApredict.KLFDA_mkpredict.LDAKPCpredict.LFDApredict.LFDAKPC
Dependencies:ade4adegenetapeaskpassbase64encbitbit64bootbslibcachemclassclassIntclicliprclustercolorspacecombinatcommonmarkcpp11crayoncrosstalkcurldata.tabledigestdplyre1071evaluatefansifarverfastmapfontawesomeforcatsfsgenericsggplot2gluegtablehavenhighrhmshtmltoolshtmlwidgetshttpuvhttrigraphisobandjquerylibjsonlitekernlabKernSmoothklaRknitrlabelinglabelledlaterlatticelazyevallfdalifecyclemagrittrMASSMatrixmemoisemgcvmimeminiUImunsellnlmeopensslpermutepillarpixmappkgconfigplotlyplyrprettyunitsprogresspromisesproxypurrrquestionrR.cacheR.methodsS3R.ooR.utilsR6rappdirsrARPACKRColorBrewerRcppRcppArmadilloRcppEigenreadrreshape2rlangrmarkdownrprojrootRSpectrarstudioapisassscalessegmentedseqinrshinysourcetoolsspstringistringrstylersystibbletidyrtidyselecttinytextzdbutf8vctrsveganviridisLitevroomwithrxfunxtableyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Symmetrised Kullback - Leibler divergence (KL-Divergence) | KL_divergence |
Kernel Local Fisher Discriminant Analysis (KLFDA) | KLFDA |
Kernel Local Fisher Discriminant Analysis (KLFDA) | klfda_1 |
Kernel Local Fisher Discriminant Analysis (KLFDA) with Multinomial kernel | KLFDA_mk |
Kernel local Fisher discriminant analysis | KLFDAM |
Estimating Gaussian Kernel matrix | kmatrixGauss |
Linear Fisher discriminant analysis of kernel principal components (DAKPC) | LDAKPC |
Local Fisher Discriminant Analysis (LFDA) | LFDA |
Local Fisher Discriminant Analysis of Kernel principle components (LFDAKPC) | LFDAKPC |
Membership assignment by weighted Mahalanobis distance and bayes rule | Mabayes |
Predict method in DA for discriminant analysis | predict predict.KLFDA predict.KLFDA_mk predict.LDAKPC predict.LFDA predict.LFDAKPC |